

Pybricks on EV3

What is EV3DEV?

● A Linux-based operating system that runs on the
Lego EV3
– Info: Your EV3 is already running Linux, just a different

type
● Runs from a microSD card
● Can run programs written in Python, Javascript,

Java, Go, C++, C, and many others
● Can connect keyboard, mouse, webcam, internet,

to your EV3

Hardware

How EV3DEV works?

Operating System (EV3DEV)

Python
Javascript
C++
Others

Sensors Actuators

EV3DEV replaces the original EV3
operating system (...which is also Linux
based), and runs inside the EV3, similar to
how windows runs inside a laptop or PC.

Operating System reads
from sensors and send
results to the programs.

Program sends commands
to the Operating System,
which then sends it to the
actuators

What is Pybricks?
● Modified version of EV3Dev
● Only supports micro-python

– Works just like Python, but slightly simplified to support
low end devices

● Uses a different Python API (Application
Programming Interface)

● Runs faster than the Python API in EV3Dev
● Also available for Lego Boost, Spike Prime, Technic,

etc

EV3Dev VS Pybricks

EV3Dev Pybricks

Support many different
programming languages

Only support Python (micro-
python)

Only works on EV3 Works on EV3, Spike, Boost,
Etc

API provides more advanced
capabilities API is simpler

Performance is poor Higher performance

Using Pybricks
● EV3 Robot

– https://pybricks.com/ev3-micropython
– Follow the installation instructions
– Write and upload program using VS Code

https://code.visualstudio.com/

● Simulator
– https://a9i.sg/gears
– In menu, click on “Python” then switch to “Pybricks Mode”
– Switch to Python tab and write code
– Switch to Simulator and run

Coding in Pybricks

● Read the documentation

Speaker, LED light, screen

Sensors and motors

Drive base (control two motors together)

You can read the rest, but they are not
as important

Coding Quick Start
Imports (Auto-generated)

Tells OS this is a pybricks program

Import libraries

For the most part, this is the same for every program.

You may choose to modify it to import more modules
(eg. if you want to send bluetooth messages to another robot)

Coding Quick Start
Create Objects (Auto-generated)

Importing the modules
provides Classes

To use the modules, you need
to create Objects for each
sensor and actuator

This will need to be modified
to suit each robot

The name of each object (eg. “ev3”, “motorA”, “color_sensor_in1”)
is up to you. You can name them whatever you want.

The ports (eg. “Port.A”, “Port.S1”) should obviously match what
you have on your robot. In the simulator, this is done for you
automatically.

Coding Quick Start
Move Functions (Auto-generated)

Pybricks lacks move_tank
and move_steering

These codes here provides
replacement functions for
them.

You can delete these if you don’t intend to use move_tank and
move_steering.

.

.

.

Coding Quick Start
Your Code (Write it yourself)

move_steering_for_degrees(steering, speed, degrees)

● steering: -100 to 100
● -100 : Spin turn left
● 0 : Straight
● 50 : Pivot turn right
● 100 : Spin turn right
● Same as the Lego EV3 software (Labview or Classroom)

● speed: -1000 to 1000 (approximate)
● In degrees per second.
● Max speed depends on battery, motors, load, etc

● degrees: Any
● Degrees to turn. 360 means one rotation.

Coding Quick Start
Your Code (Write it yourself)

move_steering_for_degrees(0, 200, 360)
● 0: Move straight ahead
● 200: At speed 200 degrees / second
● 360: For 360 degrees (1 rotation)

move_steering_for_milliseconds(100, 200, 1000)
● 100: Spin turn right
● 200: At speed 200 degrees / second
● 1000: For 1000 milliseconds (1 second)

move_steering_for_degrees(-50, 200, 360)
● Pivot turn left (left wheel stationary, right wheel forward)

move_steering_for_degrees(0, -200, 360)
● Move backwards (straight)

Using Sensors

Read the documentation to see what you can get from each sensor!

move_steering(100, 200)
● 100: Spin turn right
● 200: At speed 200 degrees / second
● This one doesn’t have a degree or time.
● Function completes immediately, but robot will continue moving forever

until given a different command

gyro_sensor_in3.angle()
● Provides the current angle
● While angle is less than 90, “pass” (do nothing)

move_steering(0, 0)
● 0: Speed 0 degrees / second (Stop)

Copyright

● Created by A Posteriori LLP
● Visit http://aposteriori.com.sg/ for more tips and

tutorials
● This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

